Introduction

* Attributes of a good language

Attributes of a good language

e Clarity, simplicity, and unity - provides both a
framework for thinking about algorithms and a means
of expressing those algorithms

* Orthogonality -every combilnation of features 1is
meaningful

* Naturalness for the application - program structure
reflects the logical structure of algorithm

e Support for abstraction - program data reflects
problem being solved

Attributes of a good language
(continued)

Ease of program verification - verifying that program
correctly performs its required function

Programming environment - external support for the
language

Portability of programs - transportability} of the
resulting programs from the computer on which they
are developed to other computer systems

Cost of use - program execution, program translation,
program creation, and program maintenance

Program structure

BNF (contex
for describing synta

Semantics
Execution behavior

Static semantics - Semantics determined at
complle time:
* var A: 1nteger; Type and storage for A

* int B[10]; Type and storage for array B
* float MyProcC(float x;float y){...}; Function

attributes
Dynamic semantics - Semantics determined during
execution:
* X = " "ABC'' SNOBOL4 example: X a string
* X =1 + 2; X an integer

* 1 (X) X an address; Go to label X

Aspects of a program

Declarations - Information for compiler

% var A: integer;
* typedef struct { int A; float B } C;

Control - Changes to state of the machine
if (A<B) { ... }
* while (C>D) { ... }

Structure often defined by a Backus Naur Form (BNF) grammar
(First used in description of Algol in 1958. Peter Naur was
chair of Algol committee, and John Backus was secretary of

committee, who wrote report.)

We will see later - BNF turns out to be same as context free
grammars developed by Noam Chomsky, a linguist)

Symbaol
tahble

2ther
tahles

SBIECT

SR E

GEMERATION

FHAZES

-
-

SOUrCE program

Lexical
analysis -

Lexical tokens

Syntactic .—— -

analysis

Farze tree ;
. *

Semantic

analysis

[ntermediate code

DOptimization

Optimized intermediate

T SOURCE

-- PAROGAAM

- RECOGNITICN

FHASES

Ohject code from
other compilations

c$de l
Code generation Chject Linking | Executable
code code
COMPILATION LOADING

Major stages

models of this.

Syntactic analysis (Parsing): Crec

tree of the program. We will see that context free
grammars and pushdown automata are formal models of
this.

Symbol table: Storing information about declared
objects (identifiers, procedure names, ...)

Semantic analysis: Understanding the relationship
among the tokens in the program.

Optimization: Rewriting the syntax tree to create a
more efficient program.

Code generation: Converting the parsed program into
an executable form.

We will briefly look at scanning and parsing. A
full treatment of compiling is beyond scope of this
course.

Translation environments

Executable program
SOurce -
—=| Translator (software) Bup-fime,
Program _ support | :
library . Yirtual cnmputer (completely
l' ! ar parially software
Translation errar messages ! simulated)
¥ ¥ : Cutput
' Interpreter (firmware, ————i~
. s results
Linker *| | hardware, or software)
Sl:lun:e [] : :
—*| Translator (sofhware) T 4 Error
Frogram _ Ohject programs ' :
: Bt prRd _ Operations (firmware, messagss
Execution dEltE-l_ hardware, ar software)
Translation error messages -
FEANSLATION LOADNG EXECUTION

BNF grammars

Start symbol: One o

* Rules (productions): A finite set O 1 ¥ » &
* <sentence> ::= <subject> <predicate>

* <subject> ::= <article> <noun>

* <predicate>::= <verb> <article> <noun>

* <verb> ::= ran | ate

* <article> ::= the

* <noun> ::= boy | girl | cake

* Replacement Operator: Replace any nonterminal by a right hand side wvalue
using any rule (written =)

* X X ¥

*

*

* K X X

Example BNF sentences

<sentence> = <subject> <predicate> First rule
—> <article> <noun> <predicate> Second rule
—> the <noun> <predicate> Fifth rule
— the boy ate the cake

Also from <sentence> you can derive
— the cake ate the boy
Syntax does not imply correct semantics

Note:
Rule <A> ::= <C>

This BNF rule also written with equivalent syntax:
A — BC

10

Languages

Any string derived from the start symbol is a sentential
form.

Sentence: String of terminals derived from start symbol by
repeated application of replacement operator

A language generated by grammar G (written L(G)) is the set
of all strings over the terminal alphabet (i.e., sentences)
derived from start symbol.

That is, a language 1s the set of sentential forms
containing only terminal symbols.

1"

Derivations

*Derivation trees: " i
*Grammar: B — 0B | 1B | 0 | 1 | B
+Derivation: B = OB = 01B = 010 |

O

*From derivation get parse tree

*But derivations may not be
unique S

*S — SS | (S) | () A
5 = 85 =(5)S =(())S =(0) () K /t‘\
*S = SS = S() =(S) () =(0)) () “"/

*Different derivations but get (
the same parse tree

Ambiguity

Role of A

* How to characterize strings of length 0? - Semantically it makes sense
to consider such strings.

#* 1. In BNF, e-productions: S — SS | (S) | () | €
* Can always delete them in grammar. For example:

% X — abYc
* Y > ¢

* Delete eg-production and add production wi

* X — abYc

* X — abc

* 2. In fsa - A moves means that
#* 1in initial state, without input
* you can move to final state.

14

Syntax can be used to determine
some semantics

T

* During Algol era, thought that BNF could be
used for semantics of a program:

* What is the value of: 2 * 3 + 4 * 57
* (a) 26
* (b) 70
* (c) 50

* All are reasonable answers? Why?

15

Usual grammar for expressions

* “Natural” value of expression >
* 1s 26

e Multiply 2 * 3 = 6

* Multiply 4 * 5 = 20

 Add 6 + 20 = 26

16

But the “precedence” of operations
is only a convention

-

All 3 grammars generate exactly the same language, but
each has a different semantics (i.e., expression value)
for most expressions.

Draw parse tree of
expression 2*3+4%*5 for each
grammar

17

Classes of grammars

Regular grammars: su B T .

* BNF rules are restricted: A — t N
t L
x|
* where: N = nonterminal, t = terminal ;fﬁkh
b L
* Examples: jfﬁhh
* Binary numbers: B - 0 B | 1 B | 0 | 1
= L
* Identifiers: ‘
* T > alL | bL | ¢ L |...] zL | a |...] b
v | z
* L > 1L | 2L |...] 9L | 0L | 1 |...]
9 1 0] al | bL | ¢cL |...] z L | a ab7d
...l vy | z

18

*

Other classes of grammars

The context free and regular grammars are 1mportant
for programming language design. We study these in
detail.

Other classes have theoretical importance, but not in
this course:

Context sensitive grammar: Type 1 - Rules: a —
where | o | < | B | [That is, length of a < length of
B, 1i.e., all sentential forms are length non-
decreasing]

Unrestricted, recursively enumerable: Type 0 -
Rules: a — P. No restrictions on a and B.

19

