
 Attributes of a good language

Introduction

1

• Clarity, simplicity, and unity - provides both a
framework for thinking about algorithms and a means
of expressing those algorithms

• Orthogonality -every combination of features is
meaningful

• Naturalness for the application - program structure
reflects the logical structure of algorithm

• Support for abstraction - program data reflects
problem being solved

2

Attributes of a good language

• Ease of program verification - verifying that program
correctly performs its required function

• Programming environment - external support for the
language

• Portability of programs - transportability} of the
resulting programs from the computer on which they
are developed to other computer systems

• Cost of use - program execution, program translation,
program creation, and program maintenance

3

Attributes of a good language
(continued)

 Syntax
• What a program looks like
• BNF (context free grammars) - a useful notation
for describing syntax.

 Semantics
• Execution behavior
• Static semantics - Semantics determined at
compile time:
 var A: integer; Type and storage for A
 int B[10]; Type and storage for array B
 float MyProcC(float x;float y){...}; Function

attributes

• Dynamic semantics - Semantics determined during
execution:
 X = ``ABC'' SNOBOL4 example: X a string
 X = 1 + 2; X an integer
 :(X) X an address; Go to label X

4

Program structure

 Declarations - Information for compiler
 var A: integer;
 typedef struct { int A; float B } C;

 Control - Changes to state of the machine
 if (A<B) { ... }
 while (C>D) { ... }

 Structure often defined by a Backus Naur Form (BNF) grammar
(First used in description of Algol in 1958. Peter Naur was
chair of Algol committee, and John Backus was secretary of
committee, who wrote report.)

 We will see later - BNF turns out to be same as context free
grammars developed by Noam Chomsky, a linguist)

5

Aspects of a program

Stages in translating a program

6

 Lexical analysis (Scanner): Breaking a program into
primitive components, called tokens (identifiers,
numbers, keywords, ...) We will see that regular
grammars and finite state automata are formal
models of this.

 Syntactic analysis (Parsing): Creating a syntax
tree of the program. We will see that context free
grammars and pushdown automata are formal models of
this.

 Symbol table: Storing information about declared
objects (identifiers, procedure names, ...)

 Semantic analysis: Understanding the relationship
among the tokens in the program.

 Optimization: Rewriting the syntax tree to create a
more efficient program.

 Code generation: Converting the parsed program into
an executable form.

 We will briefly look at scanning and parsing. A
full treatment of compiling is beyond scope of this
course.

7

Major stages

8

Translation environments

 Nonterminal: A finite set of symbols: <sentence> <subject> <predicate>
<verb> <article> <noun>

 Terminal: A finite set of symbols: the, boy, girl, ran, ate, cake

 Start symbol: One of the nonterminals: <sentence>

 Rules (productions): A finite set of replacement rules:
 <sentence> ::= <subject> <predicate>
 <subject> ::= <article> <noun>
 <predicate>::= <verb> <article> <noun>
 <verb> ::= ran | ate
 <article> ::= the
 <noun> ::= boy | girl | cake

 Replacement Operator: Replace any nonterminal by a right hand side value
using any rule (written )

9

BNF grammars

 <sentence>  <subject> <predicate> First rule
  <article> <noun> <predicate> Second rule
  the <noun> <predicate> Fifth rule
 ...  the boy ate the cake

 Also from <sentence> you can derive
  the cake ate the boy
 Syntax does not imply correct semantics

 Note:
 Rule <A> ::= <C>
 This BNF rule also written with equivalent syntax:
 A  BC

10

Example BNF sentences

 Any string derived from the start symbol is a sentential
form.

 Sentence: String of terminals derived from start symbol by
repeated application of replacement operator

 A language generated by grammar G (written L(G)) is the set
of all strings over the terminal alphabet (i.e., sentences)
derived from start symbol.

• That is, a language is the set of sentential forms
containing only terminal symbols.

11

Languages

Derivations
A derivation is a sequence of
sentential forms starting from
start symbol.

Derivation trees:
Grammar: B  0B | 1B | 0 | 1
Derivation: B  0B  01B  010
From derivation get parse tree

But derivations may not be
unique
S  SS | (S) | ()

S  SS (S)S (())S (())()
S  SS  S() (S)() (())()
Different derivations but get
the same parse tree

12

 But from some grammars you can get 2 different parse trees for
the same string: ()()()

 Each corresponds to a unique derivation:
 S  SS  SSS ()SS ()()S ()()()

 A grammar is ambiguous if some sentence has 2 distinct parse
trees.

 We desire unambiguous grammars to understand semantics.

13

Ambiguity

 How to characterize strings of length 0? – Semantically it makes sense
to consider such strings.

 1. In BNF, -productions: S  SS | (S) | () | 

 Can always delete them in grammar. For example:

 X  abYc

 Y  
 Delete -production and add production without :
 X  abYc

 X  abc
 2. In fsa -  moves means that
 in initial state, without input
 you can move to final state.

14

Role of 

 During Algol era, thought that BNF could be
used for semantics of a program:

 What is the value of: 2 * 3 + 4 * 5?
 (a) 26
 (b) 70
 (c) 50

 All are reasonable answers? Why?

15

Syntax can be used to determine
some semantics

 E  E + T | T
 T  T * P | P
 P  i | (E)

 “Natural” value of expression
 is 26
• Multiply 2 * 3 = 6
• Multiply 4 * 5 = 20
• Add 6 + 20 = 26

16

Usual grammar for expressions

But the “precedence” of operations
is only a convention

17

Grammar for 70
 E  E * T | T

 T  T + P | P

 P  i | (E)

Grammar for 50
 E  E + T | E * T | T

 T  i | (E)

Draw parse tree of
expression 2*3+4*5 for each
grammar

All 3 grammars generate exactly the same language, but
each has a different semantics (i.e., expression value)
for most expressions.

 BNF: Backus-Naur Form - Context free -
Type 2 - Already described

 Regular grammars: subclass of BNF - Type
3:

 BNF rules are restricted: A  t N |
t

 where: N = nonterminal, t = terminal

 Examples:
 Binary numbers: B  0 B | 1 B | 0 | 1

 Identifiers:
 I  a L | b L | c L |...| z L | a |...|
y | z

 L  1 L | 2 L |...| 9 L | 0 L | 1 |...|
9 | 0 | a L | b L | c L |...| z L | a
|...| y | z

18

Classes of grammars

ab7d

 The context free and regular grammars are important
for programming language design. We study these in
detail.

 Other classes have theoretical importance, but not in
this course:

 Context sensitive grammar: Type 1 - Rules:   
where |  |  |  | [That is, length of   length of
, i.e., all sentential forms are length non-
decreasing]

 Unrestricted, recursively enumerable: Type 0 -
 Rules:   . No restrictions on  and .

19

Other classes of grammars

